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Background and Motivation

● Glaucoma leads reduced vascular branching in patients [ref]. 

Alterations in vascular → reduced tissue function

Reduced tissue function → alterations in vasculature

● Potentially important biomarker for diagnosis.

● High resolution vasculature imaging using optical coherence tomography 

(OCT) is technically challenging and expensive, limiting widespread clinical 

viability.



Background

● Instead of directly imaging vasculature, lasers could be used to scatter light off 

of vasculature and produce unique network-specific speckle patterns. 
(simulated) vascular network (simulated) diffraction pattern



Methods

Hypothesis: clustering speckle data or relevant latent variables may enable 
characterization of higher (“healthy”) vs. lower (“pathological”) branching patterns.

Tools: 

- K-Means
- t-SNE
- Frequency space clustering 
- Variational autoencoder (VAE)



Methods

Data generation:

3 sets of “toy model” networks:

- Set 1: 1%:10%, Set 2: 3%:7%,  Set 3: 5%:6% branching probability

Data split (for each set):  

- Train: 75+75, Test: 25+25 pathological+healthy

Diffractio Python toolbox used for generating light diffraction patterns.

- Raleigh Summerfield approximation of diffracted light propagation

Data 1 split



Methods

We want to see if there is sufficient signal within our generated diffraction data to 
distinguish the “healthy” from the “pathological” cases.

● Clustering (K-Means)
● t-SNE
● PCA

All of the above are from the scikit learn library

For each of the methods, we flatten the 400x400 far-field diffraction image into a 
vector of 160,000 elements.



Methods
Frequency Space

We want to explore whether transformation to the frequency space improves the 
ability to distinguish the “healthy” from the “pathological” cases, especially when 
diffraction values are normalized to simulate a more representative measurement.

1. FFT run on diffraction images, frequencies shifted, and magnitude extracted
2. PCA used for feature extraction
3. K Means clustering



Methods

VAE:

- Created custom torch-compatible datasets (see link here) 
- VAE and vector quantized (VQ)-VAE: github.com/Jackson-Kang/Pytorch-VAE-tutorial
- Trained anew for each dataset
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https://www.learnpytorch.io/04_pytorch_custom_datasets/
http://github.com/Jackson-Kang/Pytorch-VAE-tutorial


Methods

VAE:

- Aside: vector quantized (VQ)-VAE: github.com/Jackson-Kang/Pytorch-VAE-tutorial

https://arxiv.org/pdf/1711.00937

http://github.com/Jackson-Kang/Pytorch-VAE-tutorial
https://arxiv.org/pdf/1711.00937


Methods

VAE: How should we use the 16x16 latent space? 

Ideas for clustering:

Global metric (average, max)

Most critical pixels in the latent space

“LIME”-esque interpretability strategy…

“Loss effect 
landscape”

Path Modl # 1/25

Heal. Modl # 1/25



Results: a baseline intensity approach

Dataset 2: some separation
Training Accuracy: 98.67%

Test Accuracy: 98.00%

Total diffraction intensity increases as branching probability increases, because there is more transmission.

Dataset 1: high separation
Training Accuracy: 100.00%

Test Accuracy: 100.00%

Dataset 3: little separation
Training Accuracy: 85.33%

Test Accuracy: 77.08%



Results: a baseline intensity approach
Total diffraction intensity increases as branching probability increases, because there is more transmission.

Dataset 2: some separation
Training Accuracy: 98.67%

Test Accuracy: 98.00%

Dataset 1: high separation
Training Accuracy: 100.00%

Test Accuracy: 100.00%

Dataset 3: little separation
Training Accuracy: 85.33%

Test Accuracy: 77.08%



Results: t-SNE

Dataset 2: some separation

Visual inspection: does it look like we will be able to separate the two classes?

Dataset 1: high separation Dataset 3: little separation



Results: k-Means

Dataset 2: some separation
Test Accuracy: 100.00%
Train Accuracy: 98.00%

Dataset 1: high separation
Test Accuracy: 100.00%
Train Accuracy: 100.00%

Dataset 3: little separation
Test Accuracy: 52.08%
Train Accuracy: 52.00%



Results: PCA

Dataset 2: some separationDataset 1: high separation Dataset 3: little separation



Results: PCA Visualization
Principal components for Dataset 3 (low separation)Principal components for Dataset 1 (high separation) 



Results: Clustering in Frequency Space

Data1 Data2 Data3

Fourier

Spatial 



Results: Clustering in Frequency Space with Normalization

Data1 Data2 Data3

Fourier 
Normalized

Spatial 
Normalized



Autocorrelation in Frequency Domain Experiment

Autocorrelation of a signal can represent 
the structure or “memory” of a signal 
which could provide additional 
information on magnitude and phase of 
fourier transform.

Data1 PSD using Normalized and 
mean-subtracted Diffraction 

https://en.wikipedia.org/wiki/Autocorrelation



Autocorrelation in Frequency Domain Experiment

Autocorrelation of a signal can represent 
the structure or “memory” of a signal 
which could provide additional 
information on magnitude and phase of 
fourier transform.

https://en.wikipedia.org/wiki/Autocorrelation

Data1 PSD TEST data using Normalized and 
mean-subtracted Diffraction 



Autocorrelation in Frequency Domain Experiment

https://en.wikipedia.org/wiki/Autocorrelation

Data2 PSD using Normalized and 
mean-subtracted Diffraction 

Data3 PSD using Normalized and 
mean-subtracted Diffraction 



Autocorrelation in Frequency Domain Experiment

Autocorrelation of a signal can represent 
the structure or “memory” of a signal 
which could provide additional 
information on magnitude and phase of 
fourier transform.

Data1 Autoencoder of Fourier Space 
With Normalized Diffraction 
(1st Attempt, needs refinement)

https://en.wikipedia.org/wiki/Autocorrelation



Results: VAE

Set 1 - not normalized:

Input Reconstructed

16x16 latent space

15 epochs



Results: VAE

Set 1 - not normalized:



Results: VAE

Set 1 - normalized:



Results: VAE

Set 2, not normalized



Results: VAE

Set 3, not normalized



Results: VAE

Set 1, normalized, larger latent space (6x16x16):

Input Reconstructed

6x16x16 latent space

15 epochs



Results: VAE

Set 1, normalized, larger latent space (6x16x16):



Conclusions + Next Steps

● We used several unsupervised methods to see if differences in the far-field 
speckle pattern of vasculature with different branching probabilities could be 
identified

● Some techniques, like t-SNE and k-Means can be used to identify different 
clusters of vein branching if the difference between “healthy” and 
“pathological” branching is large enough (and depending on normalization)

● Variational Autoencoders may underperform in our experiments due to the 
limited amount of data we had access to. Further work is needed to optimal 
parameters (number of encoding layers, latent variables) and latent variable 
characterization. 



Possible next exploration: Conditional Diffusion Model

Rayleigh - 
Sommerfield 

numerical 
integration

U-Net Diffusion model

True 
vasculature

Far-field 
diffraction of 

predicted 
vasculature

Far-field 
diffraction of 

true 
vasculatureLoss

Predicted 
vasculature

Image for step t+1

Far-field error for step t+1

Input: 
● Current step of vasculature image
● Error of noisy vasculature speckle 

pattern and true vasculature speckle 
pattern

Can we generate the true vasculature using the far field speckle pattern?

We think this might work because although we do not have any information 
about the phase of the light, we do have a good amount of prior knowledge in 
that we know what vasculature is supposed to look like.

RS is differentiable


